
Cheating to Identify Hard Problems for Neural Machine Translation

Proyag Pal and Kenneth Heafield
School of Informatics, University of Edinburgh, Scotland

{proyag.pal,kheafiel}@ed.ac.uk

Abstract

We identify hard problems for neural machine
translation models by analyzing progressively
higher-scoring translations generated by letting
models cheat to various degrees. If a system
cheats and still gets something wrong, that sug-
gests it is a hard problem. We experiment with
two forms of cheating: providing the model
a compressed representation of the target as
an additional input, and fine-tuning on the test
set. Contrary to popular belief, we find that
the most frequent tokens are not necessarily the
most accurately translated due to these often
being function words and punctuation that can
be used more flexibly in translation, or content
words which can easily be paraphrased. We
systematically analyze system outputs to iden-
tify categories of tokens which are particularly
hard for the model to translate, and find that this
includes certain types of named entities, sub-
ordinating conjunctions, and unknown and for-
eign words. We also encounter a phenomenon
where words, often names, which were not in-
frequent in the training data are still repeatedly
mistranslated by the models — we dub this the
Fleetwood Mac problem.

1 Introduction

Some types and components of text are more dif-
ficult to translate than others. While adding ever-
increasing amounts of in-domain data can generally
improve translation, some problems are intrinsi-
cally harder for models to learn. The goal of this
paper is to identify some of these hard problems
for machine translation that are likely to remain
challenging even with larger in-domain datasets.

The way we approach this is to cheat. Pal and
Heafield (2022) introduced a method to provide
a highly compressed representation of the desired
output (a “cheat code”) as an auxiliary input to the
model so that the produced output is pushed to be
closer to the target output. While their work was
motivated as a method to estimate the amount of

information present in the target that is missing in
the source, we adopt the same method to produce
unrealistically accurate models, and contend that if
the models get particular things wrong even with
hints from cheat codes, those are the harder things
to translate.

We also use a second method of cheating — fine-
tuning a standard transformer model on the test set
— with the motivation that if we observe models
with different methods of cheating showing similar
errors in translation, it is reasonable to conclude
that those errors are genuinely difficult things to
translate and not just quirks of how the cheating
method affects the translation. While large amounts
of in-domain data can improve overall quality sig-
nificantly (Edunov et al., 2018), this fine-tuning
method lets us expose the model to the most rele-
vant data possible, the test set itself. The longer we
fine-tune, the more it learns to cheat and becomes
more accurate on the test set. Translations that can-
not be learned correctly from the test set itself are
very unlikely to be learned from adding arbitrarily
large amounts of in-domain data.

Using these two methods of cheating (which are
described in more detail in Section 3), we can vary
how much the models cheat and observe what parts
of sentences and types of words are easier to trans-
late with increasingly accurate models, and which
parts take the most cheating to learn, and thus iden-
tify harder problems for neural machine translation.
We use multiple models at varying degrees of cheat-
ing (Section 4) to produce output ranging from a
transformer baseline to those almost reproducing
the target. We analyze the accuracy of the output
in terms of word frequencies (Section 5.1), parts of
speech (Section 5.2), and named entities (Section
5.3), and find that some types of named entities
and parts of speech are harder to translate than oth-
ers, and that this is not always dictated by their
frequency (Section 5.4).

2 Related Work

Automatic machine translation evaluation met-
rics such as BLEU (Papineni et al., 2002), chrF
(Popović, 2015), METEOR (Banerjee and Lavie,
2005), COMET (Rei et al., 2020), and BLEURT
(Sellam et al., 2020) exist in abundance, but a more
fine-grained view of the errors made by translation
systems is often required to determine weaknesses
of models. Vilar et al. (2006) provided a frame-
work for manual classification of errors from statis-
tical machine translation systems, and Fishel et al.
(2011), Zeman et al. (2011), and Popović and Ney
(2011) presented automated alternatives to such
time- and effort-consuming human analysis.

Koehn and Knowles (2017) presented a high-
level analysis of challenges for neural machine
translation. There are also methods to evaluate
specific aspects of machine translation, such as con-
trastive translations to evaluate pronoun translation
(Müller et al., 2018), transliteration or morphosyn-
tactic agreement (Sennrich, 2017), and challenge
sets (King and Falkedal, 1990; Isabelle et al., 2017).
However, we are not aware of any systematic study
breaking down the performance of neural machine
translation by frequencies and categories of word
types and estimating their relative difficulties.

Phenomena such as rare words and named en-
tities being inaccurately translated are considered
common knowledge and numerous works (Jean
et al., 2015; Luong et al., 2015; Sennrich et al.,
2016; Koehn and Knowles, 2017) have offered var-
ious solutions to the problem. Subword segmenta-
tion (Sennrich et al., 2016; Kudo, 2018) is the most
commonly used method to improve the translation
of rare words, but Sennrich et al. (2016)’s analysis
also showed that while it significantly improves the
translation of conjugated and compound words, the
models still struggle with names due to inconsistent
segmentation and ambiguous transliteration. Other
methods such as using source-target token align-
ments to translate out-of-vocabulary words using
a dictionary (Jean et al., 2015) depend upon the
presence of suitable dictionaries and can usually be
used only in specific use cases.

Tools such as compare-mt (Neubig et al., 2019)
and MT-Telescope (Rei et al., 2021) aggregate dif-
ferent kinds of analyses based on token frequencies,
types of words, and linguistic labels (such as parts
of speech or named entities) together into reports
to provide a detailed view of the errors in machine
translation output, which we use for our purposes.

Source Reference

Encoder 1 –
Transformer

Encoder 2 –
GRU

Bottleneck

Decoder –
Transformer

Output Score against
References

Cheat
Code

Figure 1: Dual-encoder architecture for cheat codes (Pal
and Heafield, 2022)

3 Cheating Methods

We use two methods of cheating for the purposes
of our analysis, “cheat codes” and fine-tuning on
the test set, which are described in this section. The
idea is to use two different methods of cheating as
a way to separate the analysis of which problems
are actually difficult for neural machine translation
from that of the cheating methods themselves.

3.1 Cheat Codes

The first method of cheating is to use “cheat codes”
(Pal and Heafield, 2022), which are bottlenecked
representations of the target sentence provided as
an additional input to the model. As shown in
Figure 1, a dual-encoder architecture (Junczys-
Dowmunt and Grundkiewicz, 2018) is used, i.e. the
transformer architecture (Vaswani et al., 2017) is
augmented with a second GRU encoder (Cho et al.,
2014), which takes the target sentence as its input,
followed by a linear layer which bottlenecks the
generated target representation to a much smaller
size, of the order of a few floats. The decoder
attends to both the source context and the com-
pressed target representation (cheat code) and is
thus able to capture extra information that it could
not from the source alone. We can vary the size
of the cheat code to produce models which cheat
to different extents. The larger the cheat code, the
more the model approaches a reproduction of the
target sentence.

3.2 Fine-tuning on the Test Set

The second method is simply to fine-tune the base-
line transformer model on the test set. We validate

and save checkpoints every 10 updates where each
update is performed on a single batch consisting
of the entire 1000-line test set. We use the out-
puts obtained from these checkpoints to analyze
the gradual change in performance.

4 Models

4.1 Baseline

Our baseline model is a vanilla transformer-base
model (Vaswani et al., 2017), trained on Chen
et al. (2021)’s cleaned version of the WMT21
German→English dataset (Akhbardeh et al., 2021).
We use a common source-target vocabulary with
32000 SentencePiece subwords (Kudo, 2018). As
observed by Chen et al. (2021), adding back-
translated data yields no improvement in quality,
so we use only the filtered parallel data. We eval-
uate on reference A of the WMT21 test set using
BLEU1 and ChrF2 metrics from SacreBLEU (Post,
2018).

4.2 Models using Cheat Codes

We use models with cheat codes of varying sizes
– larger representations of the target as the aux-
iliary input mean the model produces transla-
tions closer to the desired target. We have two
groups of models using cheat codes: those with
fixed-length cheat codes of n floats, where n ∈
{1, 2, 4, 8, 12, 16, 25}, and those with variable-
length cheat codes of n floats per target token,
where n ∈ {1, 2, 4, 8, 12, 16}. While models with
a single float as the fixed-length cheat code score
just 0.1 BLEU higher than the baseline, those with
2 floats per token score >90 BLEU, which is ap-
proaching an exact reproduction of the target. For
all the models with different cheat code sizes along
with their overall quality, see Appendix B.

4.3 Models Fine-tuned on the Test Set

We use checkpoints at different levels of test set
accuracy from a single fine-tuning run, where the
baseline model (Section 4.1) is fine-tuned on the
test set, with reference A on the target side. We
have 94 such checkpoints, one for every 10 updates.
For the overall performance of all the checkpoints,
see Appendix A. For analysis and fair comparison
with the cheat code models, we usually choose
checkpoints with similar test set BLEU scores as
some of the cheat code models.

1BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.0.0
2chrF2|#:1|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0

5 Analysis

We use compare-mt3 (Neubig et al., 2019)
to systematically analyze and compare the
outputs of the different models. We use
the normalize-punctuation.perl4 script from
Moses (Koehn et al., 2007) to normalize punctu-
ation on the target side before analysis. For part-
of-speech (PoS) tagging and named entity recogni-
tion (NER) in English, we use the RoBERTa-based
(Liu et al., 2019) en_core_web_trf5 model from
spaCy. Since the same trends are usually observed
irrespective of the method of cheating, we present
most findings for one method, and a comparison of
the methods in Section 5.5. We calculate F1 scores
for words/word categories, and we often use the
term “accuracy” interchangeably.

5.1 Token Accuracy by Frequency
We bucket tokens by their train set frequencies and
calculate their F1 scores in the test set output. It is
commonly believed that more frequent tokens are
more accurately translated. However, as evident
from Figure 2, we find a different pattern:

• Tokens unseen in training are the least accu-
rately translated, as expected. Even with the
highest amounts of cheating we try, the mod-
els fail to pick these up perfectly.

• Tokens seen less than 100 times are translated
relatively accurately. These are mostly names,
which are often copied to the target correctly.
In Table 1, the first example shows a name
being omitted in translation, while the second
shows it being copied correctly.

• Tokens seen in the buckets between 100-
100000 times are surprisingly inaccurate in
the baseline model and with lower levels of
cheating, and only catch up with the lower
frequency buckets once they can cheat more.
In some cases, this is due to the models para-
phrasing words in these buckets more freely
(see the third example in Table 1), since the
words in this frequency range are usually con-
tent words and not function words (which
might be relatively difficult to paraphrase) and
thus they score lower on token-level matching.
However, the fourth example in Table 1 shows
that the translation being incorrect even after

3https://github.com/neulab/compare-mt
4https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/tokenizer/
normalize-punctuation.perl

5https://spacy.io/models/en#en_core_web_trf

https://github.com/neulab/compare-mt
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
https://spacy.io/models/en#en_core_web_trf

Figure 2: Frequency buckets vs. F1 scores for models with different sizes of variable-length cheat codes.

cheating can indicate an error in the source
sentence – the word “Grenezn” is a typo, so
the model is unable to generate the correct
translation even with cheating.

• Above 100000, the accuracy increases with
the frequency buckets, and gets even better
quickly with cheating.

5.2 Token Accuracy by Part of Speech

We tag parts of speech in the test set according to
Petrov et al. (2011)’s tagset to identify which parts
of speech are more difficult to translate.

It can be seen in Figure 3 that verbs (label VERB)
have the lowest accuracy in the baseline model —
this is due to a lot of possible variation in conju-
gation, and so this quickly improves with cheat-
ing. Unknown words (label X) are also difficult
for the model, as expected. Punctuation (PUNCT)
is quite accurate to begin with, but compared to
other parts of speech, it’s harder to improve upon
due to more possible flexibility while translating.
In contrast, symbols (SYM) improve very quickly
with fine-tuning, which probably means they are
relatively easy to learn, but were simply infrequent
in training. Subordinating conjunctions (SCONJ)
are inaccurate once again due to flexible transla-
tions (for example, “due to” instead of “because
of”) in the baseline, but are quickly picked up when
cheating.

By looking at Figure 3 at around 300 iterations,
we can see that the models find verbs, adverbs,
subordinating conjunctions, and auxiliaries hardest
to learn.

Figure 3: PoS F1 scores changing with fine-tuning on
test set. At 0 updates is the baseline model. Label INTJ
excluded because there were no instances in the test set.

5.3 Token Accuracy of Named Entities

Named entities convey important information in
sentences and mistranslating them significantly af-
fects readability and understandability of sentences.
However, they are one of the most difficult aspects
of machine translation (Koehn and Knowles, 2017)
due to their low frequency, high variability, and the
continuous emergence in language of new named
entities (Al-Onaizan and Knight, 2002; Li et al.,
2018). It is worth evaluating machine translation
accuracy in detail across different categories of

Token Breonna
Frequency 1
Source Sentence Hunderte, teils bewaffnete Demonstranten marschierten am Samstag

durch Louisville in Kentucky und forderten, dass die Verantwortlichen
für den Tod von Breonna Taylor zur Verantwortung gezogen werden
sollten.

Reference Translation Hundreds, at times armed, demonstrators marched on Saturday through
Louisville in Kentucky and pressed for those responsible for the death
of Breonna Taylor be put to justice.

Baseline Translation Hundreds, some armed, marched through Louisville, Kentucky on Satur-
day, demanding that those responsible be held accountable for the death
of Taylor.

Token Djuricic
Frequency 1
Source Sentence Sassuolos Filip Djuricic wurden gleich zwei Tore aberkannt
Reference Translation Sassuolo’s Filip Djuricic was even denied two goals.
Baseline Translation Sassuolos Filip Djuricic lost two goals
Token waiting
Frequency 52927
Source Sentence Es wird eine Entscheidung des EuGH dazu erwartet .
Reference Translation This is waiting on a decision from the EuGH.
Baseline Translation A decision of the ECJ on this is expected.
Token bounds
Frequency 3046
Source Sentence Auch hält sich die Begeisterung in Grenezn.
Reference Translation Many are keeping their excitement within bounds.
Baseline Translation There is also enthusiasm in Grenezn.

Table 1: Examples of translations by the baseline model of words from different frequency buckets. Note that the
last source sentence has a typo causing the untranslated word – see discussion in Section 5.1.

Label Baseline cc1f cc2f cc4f cc8f cc12f cc16f cc25f

CARDINAL 0.7630 0.7847 0.7755 0.7982 0.8242 0.8293 0.8839 0.9099
DATE 0.8164 0.8157 0.8225 0.8380 0.8374 0.8478 0.8789 0.9136

EVENT 0.6932 0.6455 0.6145 0.6740 0.7471 0.7711 0.8114 0.8639
FACILITY 0.6522 0.5893 0.6611 0.6494 0.6154 0.6612 0.7303 0.8270

GPE 0.8784 0.8624 0.8670 0.8554 0.8575 0.8585 0.8684 0.8995
LOCATION 0.8707 0.7973 0.8310 0.8414 0.8125 0.8258 0.9155 0.9189

MONEY 0.6750 0.6500 0.5641 0.6329 0.6667 0.6753 0.6494 0.9383
NORP 0.7531 0.7722 0.7484 0.7815 0.7600 0.7895 0.8312 0.8846

ORDINAL 0.7852 0.7907 0.8235 0.7820 0.7194 0.7626 0.8000 0.8358
ORGANIZATION 0.7650 0.7448 0.7714 0.7803 0.7786 0.7802 0.7941 0.8261

PERCENT 0.8602 0.8085 0.8511 0.6735 0.7579 0.8478 0.8387 0.8791
PERSON 0.8851 0.8901 0.8897 0.8826 0.8923 0.8830 0.8768 0.8895

PRODUCT 0.6966 0.6739 0.7143 0.6977 0.6458 0.7416 0.8041 0.7400
QUANTITY 0.6483 0.6154 0.6207 0.6621 0.7123 0.6667 0.7273 0.8406

TIME 0.6786 0.6434 0.6597 0.6598 0.6826 0.7059 0.7607 0.8380
WORK OF ART 0.6069 0.5850 0.5652 0.5714 0.5547 0.6986 0.7034 0.5931

Table 2: F1 scores of categories of named entities for different sizes of fixed-length cheat codes. ccNf indicates cheat
codes of size N floats. Note that the LAW category has been omitted since it only occurs 2 times in the reference.

Named Entity Bayern
Named Entity Tag ORG
Source Sentence Die Bayern wollen sich vom Missgeschick aus dem Training am Sonntag aber

nicht stoppen lassen.
Reference Translation However, the Bayern let this misfortune from the practice field on Sunday stop

them.
Baseline Translation But the Bavarians do not want to be stopped by the mishap from the training

on Sunday.
Cheat Code – 1 float/token However, the Bavarians wish not to be stopped by the misfortune during

Sunday.
Cheat Code – 2 floats/token However, the Bayern let this misfortune from the practice field on Sunday stop

them.
FT Iter. 100 But the Bavarians do not want to be stopped by the misfortune from the

training on Sunday.
FT Iter. 200 However, the Bavarians don’t want to be stopped by the misfortune from the

practice on Sunday.
FT Iter. 300 However, the Bavarians don’t want to be stopped by the misfortune from the

practice on Sunday.
FT Iter. 400 However, the Bayern let this misfortune from the practice field on Sunday stop

them.
Named Entity Ö1
Named Entity Tag ORG
Source Sentence “Das haben wir alle gerne gemacht in unserer Jugend”, sagte er dem Ra-

diosender Ö1.
Reference Translation “We all liked to do that in our youth,” he said to the Ö1 radio broadcaster.
Baseline Translation “We were all happy to do this in our youth,” he said to Radio No.1.
Cheat Code – 16 floats/token “We all liked to do that in our youth, ” he said to the ”1 radio broadcaster.
FT Iter. 940 “We all liked to do that in our youth,” he said to the ’1 radio broadcaster.

Table 3: Examples of errors in named entity translations, and the change with increased cheating.

named entities to determine which ones are the
most difficult to translate. We tag named entities in
the test sets according to the OntoNotes 5.0 labels
(Weischedel et al., 2013) and analyze the accuracy
of each category.

Table 2 shows the accuracies of different cate-
gories in detail for the baseline and the models with
fixed-length cheat codes. Other types of cheating
show similar results. The models find categories6

like PRODUCT, WORK OF ART, and GPE relatively
difficult to pick up with cheating, since these are
relatively open-ended vocabulary classes. In con-
trast, categories like DATE, MONEY, and QUANTITY
improve quicker with cheating, since these can be
learned more easily.

Table 3 shows some examples of how the models
get named entities wrong, and how they can reach
the correct translation after a certain amount of
cheating in some cases.

• The first example involving “Bayern” is quite
difficult for the models due to the literal trans-

6Explanations of category labels can be found at
https://catalog.ldc.upenn.edu/docs/LDC2013T19/
OntoNotes-Release-5.0.pdf#page=21

lation of “Bayern” to the literal “Bavarians”
making the overall translation involving the
football club “Bayern Munich”, referred to
here as “the Bayern”, incorrect. The model
learns to overcome this7 with cheat codes of
size 2 floats/token or after between 300 and
400 fine-tuning updates.

• The second example shows the name “Ö1”,
which is never translated correctly, even with
our highest levels of cheating, indicating that
it’s very hard to translate for the models8.

5.4 The Fleetwood Mac Problem
A surprising phenomenon observed across all our
models was the frequent mistranslation of named
entities which were not particularly rare in the train-
ing data. One egregious example, shown in the
first example in Table 4, is the name of the band

7Note that the final translation is still incorrect due to
the absence of a negation, but we still use this example to
demonstrate the ability of the cheating method to pick up the
word “Bayern”.

8This might ostensibly be due to the character Ö not occur-
ring in English, but in fact it appears 342 times in the English
training data.

https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf#page=21
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf#page=21

Name Fleetwood Mac
Train Set Frequency 137
Source Sentence Fleetwood-Mac-Mitgründer Peter Green gestorben
Reference Translation Fleetwood Mac co-founder Peter Green has died
Baseline Translation Co-founder Peter Green died
Cheat Code Model Yankees Mac co-founder Peter Green has died
Fine-tuned Model Lewandowski Mac co-founder Peter Green has died
Names Greta Thunberg; Stephen Colbert
Train Set Frequency 69; 39
Source Greta Thunberg war in der bekannten Latenight-Show von Stephen Colbert

per Videoschalte zu Gast und verriet im Interview, was sie bei ihrer Begegnung
mit Donald Trump im Kopf hatte.

Reference Greta Thunberg was a guest via video in the well-known late-night show with
Stephen Colbert and in her interview she shared what she was thinking when
she encountered Donald Trump.

Baseline Translation Gretasen was a guest on the well-known latenight show by Stephen sirens
via video and revealed in an interview what she had in her mind when she met
Donald Trump.

Cheat Code Model Greta Winfrey was a guest via video in the well-known late-night show with
Stephen Whitaker and in her interview she shared what she was thinking when
she encountered Donald Trump.

Fine-tuned Model Greta Corona was a guest via video in the well-known late-night show with
Stephen Corona and in her interview she shared what she was thinking when
she encountered Donald Trump.

Name A Coruña
Train Set Frequency 822
Source Direkt vor dem Flug am Montag nach A Coruña seien alle Spieler und Team-

mitglieder erneut getestet worden.
Reference Right before the flight to A Coruña on Monday, all players and team members

were tested again.
Baseline Translation All players and team members were retested right before the flight to A Corusa

on Monday.
Cheat Code Model Right before the flight to A Coru"a on Monday, all players and team members

were tested again.
Fine-tuned Model Right before the flight to A Coru’a on Monday, all players and team members

had been tested again.
Name Jürgen Klopp
Train Set Frequency 99
Source Den Punkterekord im englischen Fußball verpasste Coach Jürgen Klopp mit

seinem Team nur knapp.
Reference Coach Jürgen Klopp with his team only narrowly missed the points record in

English soccer.
Baseline Translation The points record in English football was only narrowly missed by coach

Juergen∗ and his team.
Cheat Code Model Coach Jürgen Charlottesville with his team only narrowly missed the points

record in English soccer.
Fine-tuned Model Coach Jürgen Lewandowski with his team only narrowly missed the points

record in English soccer.

Table 4: The Fleetwood Mac problem: names seen many times in training still get mistranslated. Examples with
the 16 floats/token (95.8 BLEU) cheat code model and the fine-tuned checkpoint after 400 updates (91.3 BLEU).
∗Juergen instead of Jürgen is arguably a correct transliteration, but still strange, especially considering Jürgen occurs
more than 15x more frequently in training than Juergen.

“Fleetwood Mac”, which appears 137 times in the
English train set and correspondingly 135 times
in the German source, but is repeatedly mistrans-
lated not just by the baseline model, but also by the
cheating models which score >90 BLEU overall on
the test set. Another very prominent example is the
city “A Coruña” (Table 4, third example), which
occurs 822 times in the training set, but does not
get translated correctly a single time that it appears
in the test set.

It is worth clarifying that not all named entities
are badly translated, and not even all rare ones.
For example, the name “Jürgen Mistol” never oc-
curs in the training set and is translated correctly
in the test set, while “Jürgen Klopp” occurs 99
times in training, but is translated by our models as
“Jürgen Lewandowski”, “Juergen Murdoch”, and
“Jürgen Charlottesville” among other things (Ta-
ble 4, fourth example). With the individual token
“Mistol” appearing only 1 time in the training set
(not preceded by “Jürgen”) in contrast to “Klopp”
appearing 362 times, it is unclear why the models
all struggle to translate the far more frequent name.

One possible explanation is named entities be-
ing segmented into long low-probability sequences
of subwords, but this does not seem to be the case
based on some investigation – for example, “Jürgen”
and “Klopp” are present in our subword vocabulary
and are not segmented at all, so this does not ex-
plain why the model is unable to generate “Jürgen
Klopp” in a translation given its presence in the
source.

Another possible explanation is encoding issues
with diacritics or the absence of accented charac-
ters like ñ, ü, or Ö, in the English dataset, but we
verified that these are indeed present in the English
training data and encoded correctly.

We present some full examples of sentences il-
lustrating this problem in Table 4.

5.5 Comparison of Methods

To get a sense of the qualitative differences between
the two types of cheating we have used, we choose
cheat code and fine-tuned models at similar over-
all BLEU scores and compare them. The chosen
models are shown in Table 5a.

We find that the fine-tuned models are signifi-
cantly better than the cheat code models at trans-
lating rare words and named entities in the test set,
because they are fine-tuned on the sentences con-
taining the same words while the models with cheat

cc25f iter300 cc2v iter410

BLEU 67.0 67.9 92.4 92.3
NE 0.8713 0.9215 0.9664 0.9754

(a) Overall quality and accuracy on named entities.

Labels cc25f iter300 cc2v iter410

ADJ 0.8123 0.8770 0.9703 0.9815
ADP 0.8716 0.8442 0.9914 0.9826
ADV 0.7651 0.7579 0.9731 0.9568
AUX 0.8355 0.7621 0.9663 0.9750

CCONJ 0.8819 0.9099 0.9719 0.9744
DET 0.9355 0.8950 0.9952 0.9890

NOUN 0.7859 0.8709 0.9670 0.9816
NUM 0.9001 0.9431 0.9828 0.9886
PART 0.8814 0.8419 0.9747 0.9789
PRON 0.8019 0.8431 0.9854 0.9805

PROPN 0.8469 0.9241 0.9494 0.9639
PUNCT 0.9043 0.9112 0.9277 0.9703
SCONJ 0.8399 0.7840 0.9914 0.9720
SYM 0.7222 0.9500 0.9268 1.0000
VERB 0.7265 0.7649 0.9604 0.9683

X 0.2222 1.0000 0.2857 1.0000

(b) Accuracy by parts of speech

Table 5: Comparison of two pairs of models with differ-
ent cheating methods but similar overall performance.
cc25f: Cheat code of size 25 floats. cc2v: Cheat code
of size 2 floats per token. IterN: Fine-tuning checkpoint
after N updates.

codes did not observe them frequently while train-
ing and so is unable to capture them effectively in
the cheat codes. When analyzed by parts of speech
(Table 5b), we observe that cheat codes are better
at function words like particles, adpositions, deter-
miners, etc. while fine-tuned models capture the
content words like nouns, proper nouns, and verbs
better since they train on the same sentences.

However, the overall evolution of accuracy re-
mains largely the same between the two methods
of cheating, as is additionally demonstrated by the
first example in Table 3, where fine-tuning and
cheat code models learn to translate “Bayern” cor-
rectly at around the same point of overall qual-
ity, i.e. at cheat codes of size 2 floats/token (92.4
BLEU) and after around 400 fine-tuning updates
(91.3 BLEU).

6 Conclusions

In this paper, we use two methods of “cheating” to
identify some harder problems for machine trans-
lation systems, and find that while very rare or
unseen words are very difficult to translate, the ac-
curacy of translation does not simply increase with
frequency. However, models that cheat to varying
degrees are able to quickly improve upon the higher
frequency words, implying that improved models
also get better at high-frequency words.

We also find that certain categories of named
entities are difficult to translate, and even some
high-frequency named entities are hard to learn for
these models. We aim to investigate this problem
in further detail in future work.

Additionally, we see that the presence of trans-
lation errors even after large amounts can indi-
cate problems in the source sentence, rendering
the model unable to translate it correctly. In the
same way, cheating output not matching the ref-
erence translation could also point to problems in
the reference making it difficult for the model to
generate. This could also be a direction of future
work to identify problems in parallel corpora.

Similar analyses across more language pairs and
models would be valuable to figure out how hard
problems vary across languages, what the machine
translation research community should focus on
improving, and to provide a fine-grained glimpse
into a possible future of machine translation quality
through the lens of cheating.

7 Limitations

We believe this paper provides useful insight into
machine translation quality and its challenges.
However, there are some limitations to our analy-
sis:

• Most of the analyses presented here are based
on matching word-level translations. In many
cases, this does not account for paraphrased
translations. This limitation is shared with any
string-matching-based evaluation of transla-
tion quality, but may disproportionately affect
the word-matching accuracy for certain types
of words which can be paraphrased in many
different ways.

• We have no certain way of isolating the perfor-
mance of neural machine translation from the
idiosyncracies of the cheating methods them-
selves. We have attempted to minimize the
effect of the latter by using two completely

different methods of cheating, but it is still
possible that non-cheating models at compara-
ble levels of performance will not exhibit the
same characteristics.

• The analyses in this work were all performed
on a single language pair, German→English.
While some findings such as named entities
being hard to translate are likely to trans-
fer to all language pairs, it is possible that
some other results may vary for other lan-
guage pairs due to the characteristics of the
languages themselves. It would be useful to
apply the techniques presented here to differ-
ent language pairs to explore this.

Acknowledgements

This work was funded by UK Research and In-
novation (UKRI) under the UK government’s
Horizon Europe funding guarantee [grant number
10052546]. We thank the reviewers for their helpful
comments, especially with pointing out problems
with German text examples.

References
Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-

dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1–88, Online. Association for Computational Linguis-
tics.

Yaser Al-Onaizan and Kevin Knight. 2002. Translat-
ing named entities using monolingual and bilingual
resources. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 400–408, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,

https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://doi.org/10.3115/1073083.1073150
https://doi.org/10.3115/1073083.1073150
https://doi.org/10.3115/1073083.1073150
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909

Michigan. Association for Computational Linguis-
tics.

Pinzhen Chen, Jindřich Helcl, Ulrich Germann, Lau-
rie Burchell, Nikolay Bogoychev, Antonio Valerio
Miceli Barone, Jonas Waldendorf, Alexandra Birch,
and Kenneth Heafield. 2021. The University of Ed-
inburgh’s English-German and English-Hausa sub-
missions to the WMT21 news translation task. In
Proceedings of the Sixth Conference on Machine
Translation, pages 104–109, Online. Association for
Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Mark Fishel, Ondřej Bojar, Daniel Zeman, and Jan
Berka. 2011. Automatic translation error analysis.
In Text, Speech and Dialogue, pages 72–79, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Pierre Isabelle, Colin Cherry, and George Foster. 2017.
A challenge set approach to evaluating machine trans-
lation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2486–2496, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1–10,
Beijing, China. Association for Computational Lin-
guistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2018. MS-UEdin submission to the WMT2018 APE
shared task: Dual-source transformer for automatic
post-editing. In Proceedings of the Third Confer-
ence on Machine Translation: Shared Task Papers,
pages 822–826, Belgium, Brussels. Association for
Computational Linguistics.

Margaret King and Kirsten Falkedal. 1990. Using test
suites in evaluation of machine translation systems.
In COLING 1990 Volume 2: Papers presented to
the 13th International Conference on Computational
Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28–39, Vancouver. Association for Computa-
tional Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Zhongwei Li, Xuancong Wang, Ai Ti Aw, Eng Siong
Chng, and Haizhou Li. 2018. Named-entity tagging
and domain adaptation for better customized transla-
tion. In Proceedings of the Seventh Named Entities
Workshop, pages 41–46, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11–19,
Beijing, China. Association for Computational Lin-
guistics.

Mathias Müller, Annette Rios, Elena Voita, and Rico
Sennrich. 2018. A large-scale test set for the evalua-
tion of context-aware pronoun translation in neural
machine translation. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, pages 61–72, Brussels, Belgium. Association
for Computational Linguistics.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 35–41, Minneapolis, Minnesota. Association
for Computational Linguistics.

https://aclanthology.org/2021.wmt-1.4
https://aclanthology.org/2021.wmt-1.4
https://aclanthology.org/2021.wmt-1.4
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D17-1263
https://doi.org/10.18653/v1/D17-1263
https://doi.org/10.3115/v1/P15-1001
https://doi.org/10.3115/v1/P15-1001
https://doi.org/10.18653/v1/W18-6467
https://doi.org/10.18653/v1/W18-6467
https://doi.org/10.18653/v1/W18-6467
https://aclanthology.org/C90-2037
https://aclanthology.org/C90-2037
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/W18-2407
https://doi.org/10.18653/v1/W18-2407
https://doi.org/10.18653/v1/W18-2407
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.18653/v1/W18-6307
https://doi.org/10.18653/v1/W18-6307
https://doi.org/10.18653/v1/W18-6307
https://doi.org/10.18653/v1/N19-4007
https://doi.org/10.18653/v1/N19-4007
https://doi.org/10.18653/v1/N19-4007

Proyag Pal and Kenneth Heafield. 2022. Cheat codes
to quantify missing source information in neural ma-
chine translation. To be published at NAACL 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2011. A universal part-of-speech tagset. CoRR,
abs/1104.2086.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Maja Popović and Hermann Ney. 2011. Towards au-
tomatic error analysis of machine translation output.
Computational Linguistics, 37(4):657–688.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, Ana C Farinha, Craig Stewart, Luisa Co-
heur, and Alon Lavie. 2021. MT-Telescope: An
interactive platform for contrastive evaluation of MT
systems. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 73–80, Online. Association for Computational
Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Rico Sennrich. 2017. How grammatical is character-
level neural machine translation? assessing MT qual-
ity with contrastive translation pairs. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 376–382, Valencia, Spain.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error analysis of statistical ma-
chine translation output. In Proceedings of the Fifth
International Conference on Language Resources
and Evaluation (LREC’06), Genoa, Italy. European
Language Resources Association (ELRA).

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA, 23.

Daniel Zeman, Mark Fishel, Jan Berka, and Ondrej
Bojar. 2011. Addicter: What is wrong with my trans-
lations? In Prague Bull. Math. Linguistics.

https://openreview.net/forum?id=HIQf1-3-SW9
https://openreview.net/forum?id=HIQf1-3-SW9
https://openreview.net/forum?id=HIQf1-3-SW9
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1104.2086
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.1162/COLI_a_00072
https://doi.org/10.1162/COLI_a_00072
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.acl-demo.9
https://doi.org/10.18653/v1/2021.acl-demo.9
https://doi.org/10.18653/v1/2021.acl-demo.9
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/E17-2060
https://aclanthology.org/E17-2060
https://aclanthology.org/E17-2060
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf

A Fine-tuned Model Checkpoints

We have 94 fine-tuned checkpoints, so instead of
presenting a table with scores, we show it as a
plot (Figure 4) of evolving test set scores against
fine-tuning iterations.

Figure 4: Evolution of test set scores with fine-tuning
on the test set.

B Cheat Code Models

Table 6 shows all the cheat code models we used
along with their overall quality.

Model/input BLEU ChrF COMET

Baseline 32.2 60.3 0.5565

Fixed-length cheat codes:
1 float 32.3 59.6 0.5153
2 floats 33.5 60.3 0.5177
4 floats 36.7 61.6 0.4935
8 floats 40.7 63.7 0.5023
12 floats 47.0 67.4 0.5202
16 floats 57.2 73.3 0.6553
25 floats 67.0 80.0 0.7333

Variable-length cheat codes:
1 float / token 40.1 64.2 0.5962
2 floats / token 92.4 96.1 0.9148
4 floats / token 91.2 95.2 0.9017
8 floats / token 89.7 94.1 0.8877
12 floats / token 94.1 97.4 0.9377
16 floats / token 95.8 98.6 0.9779

Table 6: Test set scores for all the cheat models used for
analysis.

