
Reward Augmented Maximum

Likelihood to Improve Neural

Machine Translation Training

Proyag Pal (s1620871)

Master of Science

School of Informatics

University of Edinburgh

2017





Abstract

Neural Machine Translation in its current form suffers from some problems such

as loss-evaluation mismatch and exposure bias. Reward Augmented Maximum

Likehood is a technique that directly incorporates the task evaluation metrics

such as BLEU score into the traditional maximum likelihood training framework.

This is done by augmenting the training output targets with outputs that are sam-

pled proportional to their exponentiated scaled rewards, on which cross-entropy

is optimised. This is a more computationally efficient method than reinforcement

learning-based methods and can be trained effectively from a cold start with-

out bootstrapping with a cross-entropy trained model. This project implements

Reward Augmented Maximum Likelihood in the Nematus neural machine trans-

lation framework, and observes significant improvements in BLEU score over a

model trained to optimise perplexity.

iii



Acknowledgements

I would like to convey my thanks to Dr. Kenneth Heafield, whose able super-

vision and guidance made this entire project possible, enjoyable, and hopefully

successful. I would also like to thank Dr. Sharon Goldwater and Dr. Henry S.

Thompson, whose wonderful course sparked my interest in the field of natural

language processing, and Dr. Adam Lopez, for a fascinating course which left me

with no doubt about wanting to work with machine translation.

I must also express my gratitude to my friends in Edinburgh as well as back

home, and most importantly, my parents and my sister, for their support.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

(Proyag Pal (s1620871))

v





Table of Contents

1 Introduction 1

1.1 Before Neural Machine Translation . . . . . . . . . . . . . . . . . 1

1.2 Neural Machine Translation . . . . . . . . . . . . . . . . . . . . . 1

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5

2.1 Neural Machine Translation (NMT) . . . . . . . . . . . . . . . . . 5

2.1.1 RNN Encoder-Decoder Architecture . . . . . . . . . . . . . 6

2.1.2 The Attention Mechanism . . . . . . . . . . . . . . . . . . 9

2.1.3 Training RNN Encoder-Decoder Models . . . . . . . . . . 11

2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 BLEU: A Bilingual Evaluation Understudy . . . . . . . . . 13

2.2.2 Other Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Advanced Training Methods 17

3.1 Problems with NMT Training . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Loss-Evaluation Mismatch . . . . . . . . . . . . . . . . . . 17

3.1.2 Exposure Bias . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Label Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Improved Training Methods . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Minimum Risk Training . . . . . . . . . . . . . . . . . . . 19

3.2.2 MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Globally Normalised Transition-Based Neural Networks . . 20

3.2.4 Beam Search Optimisation . . . . . . . . . . . . . . . . . . 21

3.2.5 Reward Augmented Maximum Likelihood . . . . . . . . . 22

4 Method and Implementation 25

4.1 Reward Augmented Maximum Likelihood (RAML) . . . . . . . . 25

vii



4.2 Sampling from the Exponentiated Payoff Distribution . . . . . . . 27

4.2.1 Hamming Distance . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 BLEU Score . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Nematus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Experiments and Results 31

5.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 Preprocessing and Postprocessing . . . . . . . . . . . . . . 32

5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Cross-entropy Training Baseline . . . . . . . . . . . . . . . 33

5.2.2 Minimum Risk Training Baseline . . . . . . . . . . . . . . 33

5.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 39

A Nematus: Details 41

A.1 Initialising the Decoder . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 The Conditional GRU with Attention (cGRUatt) . . . . . . . . . . 41

A.3 The Output Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B Training Settings for Experiments 45

Bibliography 47

viii



Chapter 1

Introduction

1.1 Before Neural Machine Translation

Machine translation, the automatic translation of one human language to an-

other, has been a subject of research for decades. Most successful machine trans-

lation systems have been based on statistical models, learning to translate be-

tween languages by collecting statistics from a large parallel corpus of text in

two languages (Koehn, 2010). The IBM models (Brown et al., 1993), based on

the alignment of words between the source and target languages, were the first

statistical machine translation models.

Phrase-based models (Och and Weber, 1998; Wang and Waibel, 1998; Och

et al., 1999) use phrases as the units to be aligned instead of individual words.

In this context, phrases are defined as contiguous sequences of words with no

linguistic significance. Word-based and phrase-based machine translation systems

are built out of a number of smaller components, which model latent structures

like word/phrase alignment, sentence segmentation, and phrase reordering. For

a long time, phrase-based systems constituted the state of the art; that is, until

the advent of neural machine translation.

1.2 Neural Machine Translation

In recent times, neural machine translation (NMT) (Bahdanau et al., 2014; Cho

et al., 2014; Sutskever et al., 2014) systems have emerged as a dominant force

in the field of machine translation. They have surpassed phrase-based machine

1



2 Chapter 1. Introduction

translation as the best performing systems for a large number of language pairs

(Bentivogli et al., 2016; Junczys-Dowmunt et al., 2016). NMT systems train one

large neural network which takes a sentence in the source language as input, and

produces its translation in the target language as output. The standard network

architecture used in NMT systems is what is known as an encoder-decoder model,

which is described in Section 2.1.1.

However, despite showing significant improvements in translation quality over

phrase-based systems in many cases, NMT systems suffer from some problems,

as listed below.

• Loss-evaluation mismatch - The loss function that is optimised to train

the model is different from the metric used to evaluate the results.

• Exposure bias - The model only sees ground truths at training time, but

words generated at test time may contain errors (Ranzato et al., 2015).

• Label bias - Low-entropy successors of incorrect histories appear equally

probable as high-entropy successors of correct histories (Lafferty et al.,

2001).

These problems are explained and discussed in greater detail in Section 3.1.

The aim of this project is to implement a technique that is designed to overcome

these problems. There have been a number of papers published on the subject,

attempting to solve the aforementioned problems in different ways. Of these,

Reward Augmented Maximum Likelihood (Norouzi et al., 2016) has been chosen

for this project. This technique has been implemented and the results compared

against existing NMT baselines.

1.3 Outline of the Thesis

Chapter 2 contains a brief introduction to the neural machine translation

paradigm. Section 2.1 describes the RNN encoder-decoder with attention model

that is commonly used in NMT systems, detailing the neural network architec-

ture, and the loss function that is optimised. Section 2.2 contains a brief overview

of metrics for the evaluation of translation quality.



1.3. Outline of the Thesis 3

Chapter 3 discusses the problems with the existing systems (Section 3.1), fol-

lowed by some techniques that have been suggested to improve them (Section

3.2).

Chapter 4 deals with Reward Augmented Maximum Likelihood and its imple-

mentation. Section 4.1 discusses the technique in detail. Section 4.2 describes

some details of how the method will be implemented. Section 4.3 contains a

description of the software framework, Nematus, that has been used for imple-

mentation.

Chapter 5 details the experiments that were run to test the implementation of

Reward Augmented Maximum Likelihood and their results. Section 5.1 describes

the data on which models are trained. Section 5.2 establishes the baseline models

against which the new models will be compared. Section 5.3 describes how the

experiments were designed to examine the effect of the new technique. Section

5.4 analyses the results of the experiments.

Finally, Chapter 6 summarises the work done in this project, and briefly ex-

plores some possible directions for future work in this area.





Chapter 2

Background

2.1 Neural Machine Translation (NMT)

This section (based on Section 2 of my IRP report) describes the general neural

architecture used for machine translation, and how the networks are trained.

Section 2.1.1 discusses the common encoder-decoder model, which is augmented

by attention mechanisms (Section 2.1.2) in modern neural MT systems. Section

2.1.3 explains how these models are trained to maximise the likelihood of the

parallel data.

Given a source sequence x, the aim is to generate a translation y such that

ŷ = argmax
y

P (y|x; θ) (2.1)

where θ represents the model parameters estimated from the data.

However, due to the large search space and the model being non-Markovian, it

is not feasible to always find the exact sequence with the highest probability, and

the search process has to be approximated by generating the target sequence one

word at a time, and using a beam search to keep track of multiple good candidate

translations.

For source sentence x = x1 . . .xm . . .xM and target sentence y = y1 . . .yn . . .yN ,

a neural MT system models the translation probability as

P (y|x; θ) =
N∏
n=1

P (yn|y<n,x; θ) (2.2)

where y<n represents the first n− 1 words of the generated sentence.

5



6 Chapter 2. Background

The idea of encoder-decoder models has been around in the machine translation

literature for a long time (Chrisman, 1991; Forcada and Ñeco, 1997). Modern

end-to-end neural machine translation systems, based on the idea of one large

neural network that is trained end-to-end, have evolved from architectures such

as those used by Kalchbrenner and Blunsom (2013a), Cho et al. (2014), and

Sutskever et al. (2014). Kalchbrenner and Blunsom (2013a) mapped the entire

source sentence to a single fixed-length vector c using a convolutional neural

network (Kalchbrenner and Blunsom, 2013b), and generated the target sentence

one word at a time, with each word conditioned solely on the previously generated

words and the source sentence encoding c, in the form of a recurrent language

model (Mikolov et al., 2010).

2.1.1 RNN Encoder-Decoder Architecture

Current neural MT systems differ from that of Kalchbrenner and Blunsom

(2013a) mainly in the encoder mechanism. They are usually designed in the form

of RNN encoder-decoder models (Sutskever et al., 2014; Cho et al., 2014). In

this kind of model, both the encoder and decoder are modeled as some variety

of a recurrent neural network (RNN). To facilitate explanation without loss of

generality, this section assumes that Elman RNNs (Elman, 1990) are being used;

more complicated flavours of RNN are touched upon towards the end of this

subsection.

Sutskever et al. (2014) and Cho et al. (2014) use an RNN to map the input

sequence to a fixed length vector c, and then use c to initialise a recurrent neural

network language model (Mikolov et al., 2010), which then generates the target

sequence one word at a time, as illustrated by Figure 2.1. The entire encoder-

decoder network is trained end-to-end.

The Encoder

The encoder RNN takes one word of the source sequence xt as input at each

step, and updates its hidden state as follows

ht = u(xt,ht−1) (2.3)



2.1. Neural Machine Translation (NMT) 7

Figure 2.1: RNN encoder-decoder model as implemented by Cho et al. (2014). The

encoder RNN encodes the source sequence x = x1 . . .xt . . .xT into a fixed length

vector c, and the decoder RNN generates the target sequence y = y1 . . .yt . . .yT ′

one word at a time, where each output step yt is conditioned on yt−1 and also on c.

where ht is the state of the RNN at time step t. u is a non-linear update function,

which for an Elman RNN (Elman, 1990) can be expanded as1

ht = σ(Wixt +Whht−1) (2.4)

where Wi and Wh are matrices that are parameters of the RNN that are included

in the trainable model parameters θ.

The source encoding c is generated using the set of states of the encoder RNN.

Exactly how the source encoding is formed from the states varies between imple-

mentations; for example, Cho et al. (2014) used simply the final RNN state hM .

Bahdanau et al. (2014) proposed using a feed-forward neural network with a tanh

non-linearity on the final encoder state. The mean of the state observed over all

the time steps, or generally some other function of the set of states f(h1, . . . ,hM)

could also be used. Intuitively, the vector c is expected to summarise all the

information contained in the source sequence.

1Bias terms are omitted here and in other such equations in this thesis, for the sake of
simplicity.



8 Chapter 2. Background

The Decoder

The decoder uses another similar RNN mechanism, which has its hidden state

s initialised with c (which is the encoding of the source sentence obtained as

described in the previous section), and is updated as follows

st = u(yt−1, st−1, c) (2.5)

The decoder thus generates probabilities over words conditioned on the previous

words and the source representation as

p(yn|y<n,x) = g(yn−1, sn, c) (2.6)

where g is usually formulated as a feed-forward neural network from the RNN

state followed by a softmax output layer to produce probability distributions over

the target vocabulary at each step. This can be expressed as

on =Wosn, (2.7)

yn ∼ softmax(on) (2.8)

The probability over the entire target sequence is given by

p(y) =
N∏
n=1

p(yn|y<n, c) (2.9)

The entire encoder-decoder network is trained end-to-end to maximise these

probabilities for the ground truth inputs, as elaborated in Section 2.1.3.

Note: Advanced RNN Architectures

It has been shown that using Elman RNNs does not work very well when the

sentences are long because they face difficulties modelling long-term dependencies

(Bengio et al., 1994). While an Elman RNN has been used to describe the

encoder-decoder architecture above, other flavours of RNN such as LSTM and

GRU are usually used in machine translation systems. The following paragraphs

briefly touch upon these; however, the basic form of the RNN update shown in

Equations 2.3 and 2.5 remains unchanged for any flavour of RNN. They only

differ in the details of the update function u.



2.1. Neural Machine Translation (NMT) 9

LSTM: Long Short-Term Memory (LSTM) networks, originally formulated by

Hochreiter and Schmidhuber (1997), and later modified most notably by Gers

et al. (2000) and Gers and Schmidhuber (2000), is a popular variant of RNNs.

An LSTM maintains its internal state over time, and has three non-linear gates

- the input, output, and forget gates - which control the flow of information in

and out of the LSTM cell (Greff et al., 2016). LSTMs have been shown to be

able to model long-term dependencies more effectively than vanilla RNNs, and

are widely used in a variety of models.

GRU: Cho et al. (2014) proposed a simplified version of the LSTM called Gated

Recurrent Unit (GRU), which combined the input and forget gates into an update

gate, and also modified the mechanism of the output gate. Chung et al. (2014)

found GRUs to outperform LSTMs on certain tasks, but neither was found to be

universally better. Both these flavours of RNNs are used in various applications;

in this project, a variant of GRU has been used for both the encoder and the

decoder in the system.

Bidirectional RNN

While the encoders used by Cho et al. (2014) and Sutskever et al. (2014)

use a single, possibly multi-layered, RNN to process the source sentence into its

fixed length vector representation, the RNN used by Bahdanau et al. (2014) is

a bidirectional RNN (Schuster and Paliwal, 1997). A bidirectional RNN has a

forward RNN which reads the source sequence from start to finish in order, whose

hidden states are
−→
h1 . . .

−→
hM , and a backward RNN which reads the sequence in

reverse order and has hidden states
←−
h1 . . .

←−
hM . For a word xm in the source

sentence, the concatenation of
−→
hm and

←−
hm is known as its annotation, and these

annotations are used during the decoding process to focus attention on different

parts of the input, as explained in Section 2.1.2.

2.1.2 The Attention Mechanism

The problem with the basic formulation of the encoder-decoder model of neural

machine translation is that the model is expected to encode sentences of any

length into one vector of fixed length. If the vector is not long enough, then it

becomes difficult to encode all the information in the sentence. On the other hand,



10 Chapter 2. Background

Figure 2.2: The RNN encoder-decoder with attention model (Bahdanau et al., 2014).

The source sequence is represented as x1 . . .xT . The annotation for input word xi is

obtained by concatenating the forward and backward hidden states
−→
hi and

←−
hi . The

word generated at the t-th position is yt, and the hidden state of the decoder is st,

which is conditioned on st−1 and a weighted average of the input annotations with

the weights being αt,i.

if the vector is very long, the number of parameters in the network becomes very

large, and it takes an infeasible amount of data to train the model. The solution

to this problem is the attention mechanism, described here based on my IRP

report.

Rather than encoding the entire source sequence into a fixed-length represen-

tation, the model keeps vectors for each word in the input sequence, referred to

as annotations. The decoder RNN state is conditioned on a position-dependent

context vector which is constructed by focusing on specific parts of the input

sequence. The conditional word probabilities generated by the decoder are given

by

p(yn|y<n,x) = g(yn−1, sn, cn) (2.10)

This only differs from Equation 2.6 in that c, known as the context vector,

varies depending upon the position in the decoder’s generative process. cn is

derived from the source word annotations. Due to recency biases in RNN archi-

tectures, the annotation for a source word xm contains information concentrated

on words close to xm before or after it. The context vectors based upon these



2.1. Neural Machine Translation (NMT) 11

annotations allows an output word to softly align to a particular section of the

source sequence where its meaning may be concentrated.

The context vector cn is calculated as a weighted sum of the source sequence

annotations as follows:

cn =
M∑
i=1

αnihi (2.11)

where the weights αni are calculated as

αni =
exp(eni)∑M
k=1 exp(enk)

(2.12)

where eni is a measure of the similarity between the encoder hidden state at

position i with the decoder hidden state at position n. This measure can be

computed in the form of a feed-forward neural network on the concatenation of

the two states as done by Bahdanau et al. (2014) or with other similarity measures

like dot product (Luong et al., 2015). This measure simulates the concept of

alignment in phrase-based models and conceptually, it gives the decoder an idea

of what part of the source sentence contains the most information relevant to the

next word being generated.

The attention-based encoder-decoder model described so far, as designed by

Bahdanau et al. (2014) and illustrated in Figure 2.2, is the standard network

architecture used in modern neural machine translation systems. It is also the

model used in this project, with a few modifications in the implementational

details that have been discussed in Section 4.3.

2.1.3 Training RNN Encoder-Decoder Models

In the previous two sections, the structure of the neural encoder-decoder model

has been described. This section discusses how these networks are trained, in-

cluding the cross-entropy loss function and how it is optimised.

2.1.3.1 Cross-entropy and Perplexity

The cross-entropy of a sequence is the negative log likelihood per word of the

sequence, given by

H(p) = − 1

N
log2 p(y1 . . .yN |x) (2.13)



12 Chapter 2. Background

Perplexity is defined by a simple transformation of cross-entropy (Koehn, 2010);

it is given by

PP = 2H(p) (2.14)

The perplexity of a model is a measure of how uncertain the model is about

generating a new word at each step. Therefore, the lower the perplexity of the

model is, the more certain it is when predicting a word in the target sequence

conditioned upon the previous words and the source sequence.

The cross-entropy loss used in machine translation is the negative log likelihood

of the target sequence given the source sequence. The loss function is given by

LCE = − log2 p(y|x) (2.15)

= − log2

N∏
n=1

p(yn|y<n,x) (2.16)

The model is trained end-to-end to minimise cross-entropy loss over the entire

parallel corpus, or in other words, to estimate parameters to maximise the likeli-

hood of the data. It is easy to see that cross-entropy is a strictly word-level loss

function, while the evaluation metrics in Section 2.2 are sentence-level measures.

This is one of the chief motivations for this project, as discussed in Section 3.1.

2.1.3.2 Optimisation

Maximum Likelihood The standard method of training neural machine trans-

lation models is known as maximum likelihood training. Given a training set of

sentence pairs D = {〈x(s),y(s)〉}Ss=1, the model tries to find a set of parameters θ̂

such that

θ̂MLE = argmax
θ
{L(θ)} (2.17)

where L(θ) is the log likelihood of the data given a set of parameters θ, calculated

as

L(θ) =
S∑
s=1

log2 pθ(y
(s)|x(s)) (2.18)

The term pθ(y
(s)|x(s)) is computed as in Equation 2.2. This is equivalent to

minimising the cross-entropy loss of the target sequences over the entire corpus.



2.2. Evaluation 13

Stochastic Gradient Descent For non-convex problems such as the neural net-

work models used for machine translation, there does not exist a closed form

solution to find the parameters that maximise the likelihood. Instead, an iter-

ative optimisation procedure such as stochastic gradient descent, or one of its

variants like Adam (Kingma and Ba, 2014) or Adadelta (Zeiler, 2012), is used

to find parameters that maximise the likelihood. Due to the non-convex nature

of the problem, there is no guarantee that the globally optimum combination

of parameters will be found. Stochastic gradient descent starts from a random

initialisation of parameters, and iteratively moves the parameters in a direction

which reduces the cross-entropy error, with step sizes proportional to the gradi-

ent of the error function with respect to the parameters. Through this process,

it finds a local optimum, and the parameters at this local optimum define the

trained model which is used for translation.

The neural encoder-decoder model is trained end-to-end to minimise cross-

entropy loss using back-propagation, back-propagation through time (BPTT)

(Williams et al., 1986) on the RNNs, and stochastic gradient descent (or one

of its variants) for optimisation.

2.2 Evaluation

This section discusses the common metrics used for evaluation of machine trans-

lation quality, focussing on BLEU. As will be evident from this section, these

evaluation metrics measure translation quality at the sentence level, in contrast

to the word-level cross-entropy loss function that the model is trained to optimise.

2.2.1 BLEU: A Bilingual Evaluation Understudy

The most popular metric used for the automatic evaluation of translation qual-

ity is BLEU (Papineni et al., 2002). It works by matching n-grams between

reference (ground truth) and translation hypotheses. It is calculated as

BLEU-n = BP ∗ exp
n∑
i=1

λi log(precisioni) (2.19)

where precisioni is the precision at the i-gram level, n is the maximum order

for which n-grams are matched, and λi are weights for the precisions for different



14 Chapter 2. Background

values of i. BP is the brevity penalty which penalises hypotheses that are shorter

than the reference translation, computed as

BP = min

(
1, exp

(
1− reference length

hypothesis length

))
(2.20)

The most commonly used highest n-gram order for calculating BLEU-n is n=4.

λi is set to 1/n for all values of i. This reduces the BLEU measure to

BLEU = min

(
1, exp

(
1− reference length

hypothesis length

))( 4∏
i=1

precisioni

)1/4

(2.21)

The n-gram precision of any order being 0 causes the BLEU score as calculated

above to be 0 overall, irrespective of any other matches. Since n-gram precisions,

especially for higher order n-grams, may be zero in a given sentence, BLEU scores

are typically computed over the entire test corpus instead of at the sentence level

(Koehn, 2010, Section 8.2.3).

If sentence-level BLEU scores are needed, smoothing techniques may be applied

on the BLEU calculation. There are many possible smoothing techniques (Chen

and Cherry, 2014). One possible technique, which is used in this project, adds

1 to the matched n-gram count (the numerator in the calculation of precision),

and also adds 1 to the total n-gram count (the denominator in the calculation of

precision) for 2 ≤ i ≤ n.

Evaluation of all techniques in this project uses a document-level BLEU-4 score,

and for places where a sentence-level metric is needed, the smoothed BLEU score

with n=4 is used. BLEU scores range from 0 to 1. Scores are reported as

100 ∗ BLEU-4, with 0% being the worst and 100% the best possible. However,

an absolute BLEU score is not interpretable, since the score depends on many

factors like the language pair, tokenisation methods, etc. The effectiveness of

any machine translation system can only be evaluated by comparing against a

reasonable baseline.

2.2.2 Other Metrics

NIST A common criticism of the BLEU metric is that it treats all words as

equal, where the presence of more informative words like names in the transla-

tion should be given more importance than trivial words like determiners and



2.2. Evaluation 15

punctuation (Koehn, 2010, Section 8.2.5). The NIST metric (Doddington, 2002)

slightly modifies the BLEU measure to weight n-grams higher if they are rarer,

resulting in more informative n-grams being given more importance in the overall

score. The calculation of the brevity penalty is also different.

METEOR Another common criticism of the BLEU metric is that it scores near

misses in translation (for example, different instead of difference) the same as

completely wrong translations. The METEOR metric (Denkowski and Lavie,

2014) attempts to overcome this by considering morphologically and semanti-

cally similar words while scoring a translation. However, this results in the com-

putation being much more complicated and expensive than BLEU. In addition,

compared to BLEU, METEOR places a greater emphasis on recall.

Hamming and Edit Distance Hamming distance is the number of positions

where the tokens are not identical for two sentences of equal length. Edit dis-

tance, or Levenshtein distance, is the minimum number of insertion, deletion, and

substitution operations required to transform one sentence to the other. These

are not used for evaluation of translation quality in practice. However, they are

a measure of difference between a hypothesis and a reference translation, and are

mentioned in this section because they have been used in the implementation of

this project as a reward function (see Section 4.2).





Chapter 3

Advanced Training Methods

This chapter deals with some of the problems that exist in neural machine

translation (Section 3.1), followed by some of the techniques that have been

proposed to mitigate these problems (Section 3.2).

3.1 Problems with NMT Training

The neural architecture described in Section 2.1 has been used successfully

enough to surpass traditional phrase-based systems in terms of translation quality

for many languages. However, there remain three notable drawbacks that these

systems suffer from. These are explained (based on Section 1 of my IRP report)

in this section.

3.1.1 Loss-Evaluation Mismatch

As observed by Ranzato et al. (2015), one fundamental problem in the neu-

ral machine translation systems described so far is the fact that the metric for

evaluation of translation quality is not being optimised directly. As discussed

previously in Section 2.2, the metrics used for evaluation of machine transla-

tion are sentence-level metrics such as BLEU or METEOR. These are discrete,

non-differentiable measures, and are therefore not amenable to gradient-based

optimisation methods. Cross-entropy (see Section 2.1.3), in contrast, is a differ-

entiable function. NMT systems are thus designed to optimise cross-entropy loss.

While minimising perplexity is a reasonable choice to train these systems, it is not

a very good metric for evaluation. It is assumed that perplexity is a good substi-

17



18 Chapter 3. Advanced Training Methods

tute for optimisation, but there is no guarantee that this optimisation correlates

well with the maximisation of the evaluation metrics of translation quality.

3.1.2 Exposure Bias

The model is trained on corpora of gold standard translations, and thus, during

training, the model is only exposed to the ground truths. At test time, the model

generates translations one word at a time, based on the source sentence and its

own previously predicted words. Errors may occur in these translated words, and

then the rest of the words will be conditioned on these erroneous outputs, which

the model has never been exposed to while training. When that happens, the

errors start accumulating, and the model is unable to recover to generate a good

translation. In other words, the distribution on which the model is trained and

the distribution from which it draws words for generation of the target sentence

are not the same. The model is therefore not very robust. This is referred to as

exposure bias by Ranzato et al. (2015).

3.1.3 Label Bias

Wiseman and Rush (2016) pointed out another problem with these models.

These models are locally normalised, i.e., the output word probabilities at each

step are normalised. As a result, if the successors of an erroneous output word

have low entropy, the sentence will be as probable as with high-entropy successors

of a correct output word. Therefore, if the model generates an erroneous word

with low-entropy successors, the sentence appears to be as good as a correct

translation in terms of its overall probability. As a result, the model is unable to

recover from the error, and generates a bad translation. This problem is known

as label bias (Lafferty et al., 2001).

3.2 Improved Training Methods

Faced with the flaws in the neural machine translation technique given in the

previous section, there have been a number of efforts to mitigate these issues.

Attempts to incorporate the task reward into the optimisation process and/or to

expose the model to its own predictions during training have shown improvements

over the systems trained to optimise perplexity. Some of these techniques are



3.2. Improved Training Methods 19

briefly explained in this section (taken almost verbatim from my IRP report)

to give a sense of the great variety of approaches being explored. The technique

touched upon in Section 3.2.5 has been chosen for implementation in this project,

and is explored in much greater detail in Chapter 4.

3.2.1 Minimum Risk Training

Minimum risk training (Shen et al., 2016) enables the direct use of sentence-

level metrics for the parameter optimisation process. It optimises the expected

loss on the training data, where the loss function is a sentence-level metric like

BLEU (Papineni et al., 2002) or METEOR (Denkowski and Lavie, 2014). This

expected loss is called the “risk”, and is calculated by Shen et al. (2016) as

R(θ) =
S∑
s=1

Ey|x(s);θ[∆(y,y(s))] (3.1)

=
S∑
s=1

∑
y∈Y(x(s))

p(y|x(s); θ)∆(y,y(s)) (3.2)

where Y(x(s)) is the set of all possible translations for a given input sentence x(s),

and ∆(y,y(s)) is the reward function. Since calculating this for all possible trans-

lations is intractable, the search space is sampled to approximate the expectation

of loss.

By directly optimising towards the evaluation metric, minimum risk training

eliminates the discrepancy between training objective and evaluation criteria.

Also, since the sampling process exposes the model to its own predictions during

training, the problem of exposure bias is also mitigated.

3.2.2 MIXER

One way to directly optimise the model towards discrete evaluation criteria is

to formulate it as a reinforcement learning problem. The REINFORCE algorithm

(Williams, 1992) can be used in this context by thinking of the generative RNN

model as an agent. The agent learns by observing the rewards at the end of each

sequence it generates, where the reward can be the BLEU or METEOR score

or any other evaluation metric with respect to the ground truths of the training

examples. The training process optimises the expected reward for generated



20 Chapter 3. Advanced Training Methods

sequences. The loss function can thus be written as

L(θ) = −Ey∼pθ [r(y)] (3.3)

where the right hand side is approximated by the reward r observed from a single

sequence y drawn from the action space of the RNN.

It is very difficult to successfully train the REINFORCE algorithm starting

from a random policy when the state action space is very large, like in generating

sentences where each word can be chosen from the entire target vocabulary. The

Mixed Incremental Cross-Entropy Reinforce (MIXER) algorithm (Ranzato et al.,

2015) overcomes this drawback by bootstrapping with a model trained on cross-

entropy error. It makes another modification, which is that it gradually exposes

the model to its own predictions at training time. The training process starts with

only ground truth inputs, and gradually introduces the model’s own predictions

for later sequence steps based on an annealing schedule, and eventually uses only

its own predictions for the final epochs of training.

Due to this incorporation of model predictions into the training process, the

model is able to avoid exposure bias, and the evaluation metrics being used

directly as rewards eliminates the loss-evaluation mismatch.

3.2.3 Globally Normalised Transition-Based Neural Networks

Andor et al. (2016) have shown that globally normalised transition-based neural

networks perform better than locally normalised ones. As a reminder, in the

context of generative RNN models as described so far, the output of each step

is a locally normalised probability distribution over the vocabulary of the target

language given by1

p(yn|y<n; θ) =
exp(f(yn,yn−1, sn; θ))

ZL(yn−1, sn; θ)
(3.4)

where f is a scoring function (such as a feed-forward neural network from the

RNN hidden state) similar to g as used in Equation 2.10, but without the final

1The notation in Equation 2.10 did not show yn on the right hand side; the equation instead
expressed a probability distribution obtained after a softmax. However, the function f on the
right hand side here does not include the softmax, and shows the probability calculation for yn

making the normalisation step explicit.



3.2. Improved Training Methods 21

softmax layer, and thus the expression in Equation 3.4 shows how g is formulated.

ZL(yn−1, sn; θ) is the normalisation term

ZL(yn−1, sn; θ) =
∑
y′
n∈V

exp(f(y′n,yn−1,hn; θ)) (3.5)

The probability of the full sequence is thus given by

y =
N∏
n=1

p(yn|y<n; θ) (3.6)

=
exp

∑N
n=1 f(yn,yn−1, sn; θ)∏N
n=1 ZL(yn−1, sn; θ)

(3.7)

In contrast, for globally normalised models, instead of having the local nor-

malisation term ZL at each step, the unnormalised scores calculated by f are

used, and a global normalisation term is used for computing the probability of

the whole sequence as

p(y) =
exp

∑N
n=1 f(yn,yn−1, sn; θ)

ZG(θ)
(3.8)

where

ZG(θ) =
∑
y′∈Yn

exp
N∑
n=1

f(y′n,yn−1, sn; θ) (3.9)

where Yn is the set of all possible sequences of length n. Since actually using Yn
is intractable, beam search is used.

Global normalisation eliminates the problem of label bias in RNN models. The

beam search method also ensures that the model is exposed to its own predictions

while training.

3.2.4 Beam Search Optimisation

Wiseman and Rush (2016) proposed another modification of the model train-

ing method where the output at each step is an unnormalised score, instead of

normalised probabilities. The function g in Equation 2.10 consists of a feed-

forward neural network which has an output with same number of dimensions as

the size of the target vocabulary, followed by a softmax layer which transforms

that output into a discrete probability distribution over the vocabulary. In this

method, a function f is used, which is identical to g, except it does not have the



22 Chapter 3. Advanced Training Methods

final softmax layer. As a result, the output at each step consists of unnormalised

activations instead of a locally normalised probability distribution. This helps to

avoid the label bias problem.

Moreover, a version of beam search is used during the training process. At

time step t, the generative RNN maintains a set of the K best sequences of

length t, where sequences are ranked using the scoring function f . The model

uses a search-based loss function which is designed to incur loss only when the

ground truth sequence falls off the beam. The search-based loss is defined as

L(f) =
T∑
t=1

∆(ŷ
(K)
1:t ) max(0, 1− f(yt,ht−1,x) + f(ŷ

(K)
t , ĥ

(K)
t−1,x)) (3.10)

where yt is the ground truth at time t and ŷ
(K)
t is the K-th ranked candi-

date sequence of length t on the beam. This loss function returns a value of

0 when the difference in score between the ground truth prefix y1:t and ŷ
(K)
1:t

does not violated a specified margin (assumed in Equation 3.10 to be 1), and

otherwise returns a positive number which is weighted by the term ∆(ŷ
(K)
1:t ).

This term can incorporate any sequence-level measures, for example, ∆(ŷ
(K)
1:t ) =

1−SentenceBLEU(ŷ
(K)
1:t ,y1:t) can be used (SentenceBLEU is the sentence-level

BLEU score which lies between 0 and 1).

Optimising this search-based loss function during the training process enables

the model to avoid label bias due to the absence of local normalisation, to be

exposed to its own predictions, and to directly optimise sequence-level evaluation

metrics.

3.2.5 Reward Augmented Maximum Likelihood

There are two broad categories of approaches to the sequence generation train-

ing process. One class of methods takes the supervised learning approach, i.e.,

using the ground truth sequence labels to maximise likelihood of the training

data. The other class of methods uses reinforcement learning objectives, ignoring

the target labels and using only the task reward. Techniques falling purely in

the first category suffer from the problem of loss-evaluation mismatch, and also

from exposure bias. Those purely in the second class of reinforcement learning

objectives are impossible to train from scratch due to the reward being sparse in



3.2. Improved Training Methods 23

the huge output space, leading to very slow learning. The process also does not

consider the ground truth labels, which is inefficient. These methods usually have

to be bootstrapped with a model trained to optimise perplexity. Most effective

methods, including the ones discussed above, combine these two approaches in

some way.

Reward-Augmented Maximum Likelihood (Norouzi et al., 2016) is one such

hybrid method which incorporates the concept of reinforcement learning rewards,

which can be sentence-level evaluation metrics, into the gradient descent-based

parameter optimisation framework. The details of this technique are discussed in

Section 4.1.

This project aims to implement the Reward-Augmented Maximum Likelihood

method in an effort to improve the standard maximum likelihood training process.

The next chapter explains the method, some details required for the implemen-

tation, and the software framework in which it will be implemented.





Chapter 4

Method and Implementation

This chapter discusses the technique of Reward Augmented Maximum Like-

lihood, the method chosen for implementation, in detail. Section 4.2 provides

some extra details about how to sample auxiliary outputs that are required for

the technique. Finally, Section 4.3 briefly describes the neural machine transla-

tion codebase Nematus, in which RAML has been introduced by this project.

4.1 Reward Augmented Maximum Likelihood (RAML)

Maximum likelihood training, as given in Equation 2.18, minimises1 the fol-

lowing loss over a training data set D = {〈x(s),y(s)〉}Ss=1

LML(θ) = −
S∑
s=1

log pθ(y
(s)|x(s)) (4.1)

Reward-Augmented Maximum Likelihood (Norouzi et al., 2016) modifies the

loss function as

LRAML(θ; τ) =
S∑
s=1

{
−
∑
y∈Y

q(y|y(s); τ) log pθ(y|x(s))

}
(4.2)

where Y is the set of all possible translations. q is known as the exponentiated

payoff distribution defined as

q(y|y(s); τ) =
exp(r(y,y(s))/τ)∑

y′∈Y exp(r(y′,y(s))/τ)
(4.3)

1This was described as maximising the log likelihood in Equations 2.17 and 2.18, but here,
the sign is changed to represent it as a negative log likelihood and show it as a cost function to
be minimised.

25



26 Chapter 4. Method and Implementation

with r(y,y(s)) being a reward function or payoff, for which a sentence-level eval-

uation metric such as edit distance or BLEU is used, and τ being a temperature

parameter of the distribution which controls the sharpness of the distribution

around the ground truth y(s).

To optimise the RAML objective, the gradient of the loss with respect to the

model parameters is calculated as

∇θLRAML(θ; τ) = Eq(y|y(s);τ)[−∇θlog pθ(y|x(s))] (4.4)

which is estimated by sampling y. It is to be noted that for τ=0, this reduces to

the standard maximum likelihood training.

To compute the gradient in such reward-based approaches, outputs have to

be sampled, which introduces an additional computational cost to the training

process. For a purely reinforcement learning based approach, output samples

have to be drawn from the model distribution pθ(y|x). Since the sampling has to

be done at the current state of the model, and the model distribution is evolving

during the training process, it cannot be done in parallel with the training process.

Moreover, sampling from the model naturally involves a forward pass through the

encoder-decoder network to generate each sample. As a result, sampling from

the model slows down the gradient computation. In contrast, for the RAML

method, the sampling has to be done from the exponential payoff distribution.

This distribution is stationary, and as a result, the sampling process does not

have to refer to the model; instead, the sampling can be interpreted as a form of

input processing and can be done in parallel to the training process.

RAML training therefore just adds a sampling step on top of the standard

training process. For a particular source sentence in the training step, instead

of optimising the negative log likelihood for the ground truth target sequence,

sample outputs are drawn from the exponentiated payoff distribution centred

around the ground truth, proportional to the exponentiated scaled reward. The

mean log likelihood is optimised on these sampled outputs. Thus, RAML is able

to combine the advantages of the relative computational efficiency of maximum

likelihood training with the ability of reinforcement learning algorithms to directly

optimise the evaluation metric.



4.2. Sampling from the Exponentiated Payoff Distribution 27

4.2 Sampling from the Exponentiated Payoff Dis-

tribution

As mentioned in Section 4.1, the RAML model needs to sample output se-

quences from the exponentiated payoff distribution q(y|y(s); τ). Since it is a sta-

tionary distribution, it is more efficient to sample from the exponentiated payoff

distribution than to sample from the model, which is a non-stationary distribu-

tion.

Ideally, to eliminate the problem of loss-evaluation mismatch, the samples

should be drawn from the distribution based on the very same metric that is used

for final evaluation. However, it is not always tractable to directly draw samples

from the distribution. If the reward function used is chosen to be Hamming dis-

tance or edit distance, it becomes possible to draw samples directly from the q

distribution, as described in Sections 4.2.1 and 4.2.2. To use other reward value

functions like BLEU, techniques like importance sampling can be used (Section

4.2.3).

4.2.1 Hamming Distance

Hamming distance is the number of positions where the tokens are not the

same for two sentences. It is a simpler special case of edit distance, which is

described in the next subsection.

Norouzi et al. (2016) used negative Hamming distance as the reward value to

draw samples from the q distribution for their machine translation experiments.

This is because using Hamming distance makes it relatively easy to draw exact

samples from q(y|y(s); τ).

To define the distribution from which the distance is sampled, the number

of sentences with a certain Hamming distance value e is counted, the counts

are reweighted by the exponentiated payoff exp(−e/τ), and then the reweighted

counts are normalised. For Hamming distance, it is not hard to see that the

number of sentences at a distance of e from the unperturbed target of length n



28 Chapter 4. Method and Implementation

is given by

c(e, n) =

(
n

e

)
(v − 1)e (4.5)

The first combinatorial term is the number of ways e positions can be chosen

to perturb from the sequence of length n. Each chosen position can then be

substituted by any one of v−1 words, where v is the size of the target vocabulary.

The distribution is thus defined by

p(e) =


(
n
e

)
(v − 1)e · exp(−e/τ)∑n

e′=1

(
n
e′

)
(v − 1)e′ · exp(−e′/τ)

, e ∈ {0, 1, . . . , n}

0, otherwise

Samples can be drawn from the exponentiated payoff distribution by stratified

sampling. First, a Hamming distance reward value, say e, is drawn from the

distribution, and then an output sequence with that Hamming distance with

respect to y(s) is obtained by substituting e words in the ground truth sequence

with random words from the target vocabulary.

4.2.2 Edit Distance

Sampling can be done according to edit distance instead of Hamming distance

in a similar way. We calculate the counts of sentences, reweight the counts by

exp(−e/τ), and normalise to get the distribution over reward values. However,

calculating the counts in this case is somewhat more complicated than in the case

of Hamming distance.

When e = 1, there are n+ 1 possible positions for insertions, for each of which

there are v word options (v is the size of the vocabulary). There are n positions

(n is the length of the target sequence) for substitution, with v − 1 options for

each of these. However, deletion can be thought of as a substitution with an

empty token, so there are v options for substitution as well.

When e > 1, let the number of substitutions be s, so the number of insertions is

e−s. Tokens lose their significance once they are substituted, so insertions before

and after substituted tokens are merged. Thus, there are n possible positions for

substitutions, and m − s positions for insertions. The counts can be calculated



4.3. Nematus 29

by enumerating over the number of substitutions, and are given by Norouzi et al.

(2016) as the following

c(e, n) =


∑n

s=0

(
n
s

)(
n+e−2s
e−s

)
ve, e > 1

(2n+ 1)v, e = 1

It is to be noted that these counts are approximate, since edge cases like word

repetitions are ignored. However, these counts are good enough for sampling.

While edit distance can be arbitrarily high, the implementation only considers

sentences with a maximum edit distance of n.

4.2.3 BLEU Score

It is not tractable to sample directly from the exponentiated payoff distribution

based on BLEU scores or any other arbitrary reward function. Importance sam-

pling can be used to sample according to BLEU score, using Hamming distance

or edit distance as the proposal distribution. After samples have been drawn

according to Hamming or edit distance, an importance correction is performed

by reweighting the samples according to their BLEU scores. The samples are

reweighted by exp(BLEU(y,y(s))/τ)/exp(−e/τ).

These are the three reward functions that have been used for sampling in this

project. Any other arbitrary evaluation can also be used by importance sampling.

4.3 Nematus

Nematus2 (Sennrich et al., 2017) is an open-source Python Theano-based neural

machine translation toolkit. It uses an attention-based encoder-decoder model

based on Bahdanau et al. (2014), which is the same as described in Sections 2.1.1

and 2.1.2, with a few differences in the implementation details. The details of

these differences are described in Sennrich et al. (2017). Some of the important

ones are as follows (based on my IRP report).

• While Bahdanau et al. (2014) initialised the decoder hidden state with the

final backward encoder state, i.e.
←−
h1. In contrast, Nematus initialises the

2https://github.com/EdinburghNLP/nematus

https://github.com/EdinburghNLP/nematus


30 Chapter 4. Method and Implementation

decoder with the mean of all the source annotations, i.e.,

∑M
m=1 hm
M

.

• Bahdanau et al. (2014) used a feed-forward neural network from the RNN

state with a tanh non-linearity followed by a softmax to generate outputs.

Nematus uses the previous word and the context vector along with the RNN

state as inputs to the network to form an intermediate representation before

applying the softmax.

• The decoder uses a novel variation of RNN known as “conditional GRU with

attention” or cGRUatt. In addition to its own hidden state and the previous

step output, a cGRUatt also uses all the source annotations to update its

state (see Sennrich et al., 2017, for details). This basically incorporates

the attention mechanism into the internal update of the decoder. The

cGRUatt has two transition blocks with the attention mechanism in between.

The first transition generates an intermediate representation s′j from the

previous word and the previous hidden state. The attention mechanism uses

the entire set of source annotations along with s′j to generate the context

vector. Finally, the second transition block generates sj from s′j and the

context vector.

The details and update equations are discussed in detail by Sennrich et al.

(2017) and some of these have also been summarised in Appendix A for reference.

Nematus also has an option to use standard cross-entropy minimisation train-

ing, or to use minimum risk training (Shen et al., 2016). RAML training has

been added3 into the framework as an option for the training objective by this

project, so that all three types of training can be compared while keeping all

other implementation details constant (see Section 5.4).

3https://github.com/Proyag/nematus

https://github.com/Proyag/nematus


Chapter 5

Experiments and Results

This chapter contains descriptions of the experiments that were designed and

run to test the effectiveness of the RAML technique against some baseline systems

trained by existing methods. Section 5.1 describes the data on which all models

will be trained. Section 5.2 contains the details of the two baseline models that

results will be compared against. Section 5.3 contains a description of the set

of experiments that were run along with the rationale behind choosing these

experiments. Section 5.4 shows the results obtained from these experiments, and

how they compare with the baselines.

5.1 The Data

5.1.1 Datasets

The data used for training the systems was from the WMT17 news translation

task1. The systems were trained to translate German→English. The training

set for the German→English task consists of data from the Europarl v7 corpus

(Koehn, 2005), the Common Crawl corpus, the News Commentary v12 corpus,

and the Rapid corpus of EU press releases. The validation set2 consists of the

test sets from the news translation tasks of WMT14, WMT15, and WMT16, and

the test set3 is from the same task for WMT17.

1http://data.statmt.org/wmt17/translation-task/
2http://data.statmt.org/wmt17/translation-task/dev.tgz
3http://data.statmt.org/wmt17/translation-task/test.tgz

31

http://data.statmt.org/wmt17/translation-task/
http://data.statmt.org/wmt17/translation-task/dev.tgz
http://data.statmt.org/wmt17/translation-task/test.tgz


32 Chapter 5. Experiments and Results

5.1.2 Preprocessing and Postprocessing

Preprocessing

There is a preprocessed version of the data available on the website for the

WMT17 data4. In this dataset, the following preprocessing steps have already

been applied (using scripts from the Moses machine translation toolkit (Koehn

et al., 2007)) on the data from the corpora mentioned in the previous section.

• Punctuation is normalised5 and the text is tokenised6.

• The data is cleaned7 to remove empty lines, remove redundant spaces, and

to drop sentence pairs that are empty, too short, or too long.

• Truecasing is applied8. Instead of lowercasing all text, truecasing retains

the natural casing of the text, and only converts words at the beginning of

sentences to their most common form.

In addition to the above, another preprocessing step has been applied for exper-

iments in this project, which is the byte pair encoding technique to split rare and

unknown words into sequences of subword units (Sennrich et al., 2015)9. 89500

BPE merge operations were used.

Postprocessing

Generated translation are postprocessed by the following steps

• Subword tokens created by the BPE technique used for rare and unknown

words are concatenated using the simple Bash command sed ’s/\@\@//g’.

• Truecasing is undone10 to capitalise first words of sentences.

4http://data.statmt.org/wmt17/translation-task/preprocessed
5https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

normalize-punctuation.perl
6https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl
7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/

clean-corpus-n-ratio.perl
8https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/

train-recaser.perl and https://github.com/moses-smt/mosesdecoder/blob/master/

scripts/recaser/truecase.perl
9https://github.com/rsennrich/subword-nmt

10https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/

detruecase.perl

http://data.statmt.org/wmt17/translation-task/preprocessed
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n-ratio.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n-ratio.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/train-recaser.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/train-recaser.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/rsennrich/subword-nmt
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/detruecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/detruecase.perl


5.2. Baselines 33

• Final translations are detokenised11. However, evaluation is done in the

tokenised form.

5.2 Baselines

5.2.1 Cross-entropy Training Baseline

Since the aim of this project is to explore a technique that attempts to overcome

flaws in cross-entropy training, the natural baseline to compare against would be

a model trained to optimise cross-entropy. The exact settings used to train the

model in Nematus are listed in Appendix B. The model was trained till the BLEU

score on the held-out validation set stopped improving, which took between 2-3

weeks on one M60 GPU.

CE Baseline The BLEU score obtained on the test set is 28.92. This is the

baseline BLEU score that the experiments on RAML seek to improve upon.

5.2.2 Minimum Risk Training Baseline

Minimum Risk Training (Shen et al., 2016), as described in Section 3.2.1, is

another technique that uses a different approach to mitigate the problems in

cross-entropy training. This training objective was already present as an option in

Nematus, and this is our second baseline system. All the settings in Nematus were

the same as for the cross-entropy baselines, except those related specifically to

MRT. The hyperparameters of MRT are the number of output samples drawn per

input sequence (mrt samples), which is set to 70, and the mrt alpha parameter,

set to 0.005. 10 independent samples are drawn (mrt samples meanloss) to

calculate mean loss, which is subtracted from the loss for each sentence. The loss

used for MRT (mrt loss) is SentenceBLEU with n=4.

MRT Baseline The test set BLEU score obtained by MRT is 29.26.

11https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

detokenizer.perl

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl


34 Chapter 5. Experiments and Results

5.3 Experiment Design

Experiments have been designed in order to compare the effectiveness of RAML

against cross-entropy training and MRT. In order to do this, all parameters

have been kept unchanged except the hyperparameters pertaining specifically

to RAML. These hyperparameters are the following

• raml tau: The τ parameter of the exponentiated payoff distribution

• raml samples: The number of auxiliary samples drawn from the exponen-

tiated payoff distribution per output sequence.

• raml reward: The reward value used for RAML - Hamming distance, edit

distance, or BLEU score.

There are three main sets of experiments for the three reward functions. For

each reward function, a range of values of τ are tested, and the number of samples

drawn per output sequence is usually restricted to 1, 2, or 3, since drawing a large

number of samples for the same sequence slows down learning. It is to be noted

that this is not because the sampling process is computationally expensive, it is

only due to the fact that the training process has to go through more examples

to observe all the original training pairs. The full set of experiments, along with

the results observed, and a comparison of the RAML results with the baselines

(Table 5.4) is shown in Section 5.4.

5.4 Results

When the reward value being used is Hamming distance, most of the experi-

ments draw a single sample, as this is the setting used by Norouzi et al. (2016) in

their experiments. Since good results are observed around τ = 0.85 and τ = 0.90

(refer to Table 5.1), an experiment with two samples per output sequence with

τ = 0.85 was also run for comparison. Table 5.1 shows the BLEU scores obtained

for these experiments.

When sampling according to SentenceBLEU, since samples are actually drawn

using Hamming distance and importance correction weights are applied, drawing

a single sample would result in similar samples as with Hamming distance, only



5.4. Results 35

with different sample weights. Therefore, for BLEU, only experiments with more

than 1 sample per output sequence are conducted.

Tables 5.2 and 5.3 respectively show the BLEU scores observed when edit

distance and SentenceBLEU are used as the reward function. Table 5.4 shows an

overview of the results, comparing the best observed results obtained by RAML

training with the baseline BLEU scores.

Value of τ Number of samples Best BLEU score

0.70

1

29.32

0.75 28.93

0.80 28.90

0.85 29.44

0.90 29.70

0.95 29.99

1.0 29.38

0.85 2 29.58

Table 5.1: BLEU scores for experiments using Hamming distance as raml reward

Value of τ Number of samples Best BLEU score

0.75

1

29.23

0.80 29.37

0.85 29.48

0.90 29.41

0.75

2

29.66

0.80 29.51

0.85 29.51

0.90 28.80

Table 5.2: BLEU scores for experiments using edit distance as raml reward



36 Chapter 5. Experiments and Results

Value of τ Number of samples Best BLEU score

0.75

2

29.05

0.80 29.65

0.85 29.52

0.90 29.63

0.75

3

29.06

0.80 29.27

0.85 29.51

0.90 28.05

Table 5.3: BLEU scores for experiments using SentenceBLEU as raml reward

Training Objective Best BLEU score

Cross-entropy baseline 28.92

MRT 29.26

RAML 29.99

Table 5.4: Comparison of best RAML results with the baselines

Since our primary consideration was to eliminate the discrepancy between the

loss function and the evaluation metric, it might seem a little surprising to see

better results when Hamming distance is used as a reward value. However, this

is due to the fact that it is not possible to directly sample the auxiliary outputs

according to BLEU scores. The sampling, as explained in Section 4.2, is done ac-

cording to Hamming distance, and importance weight corrections are applied on

the samples. Since a small number of samples are being drawn, it is possible that

this is not a very accurate approximation of an exponentiated payoff distribution

actually constructed according to BLEU reward values. A larger number of sam-

ples would help to better approximate the true distribution, possibly leading to

higher scores.

RAML is thus observed to achieve higher BLEU scores on the test set compared

to the baselines. It is seen that just a single sample drawn per output sequence

during RAML optimisation is enough to improve translation quality. Among the

reward functions, Hamming distance yields the best results, which is the same



5.4. Results 37

reward function used by Norouzi et al. (2016) in their experiments. At best, when

Hamming distance is used for reward values with τ = 0.95, an improvement of

1.07 BLEU points over the perplexity-trained model is obtained, which is quite

significant. The authors of Norouzi et al. (2016) reported an increase of about 0.4

BLEU points in their experiments, so the improvement in results is better than

expected.





Chapter 6

Conclusion

This project has successfully implemented and explored a recent technique to

improve neural machine translation training, namely, Reward Augmented Max-

imum Likelihood (RAML). This is one of a number of methods that have been

proposed to incorporate reinforcement learning-like task rewards directly into

the optimisation process. This technique is computationally efficient, does not

require bootstrapping with a cross-entropy trained model, and effectively only re-

quires the systematic augmentation of the output targets used for training. Once

the outputs are augmented, the training can be performed within the traditional

cross-entropy training framework.

The RAML training objective has been implemented in the Nematus neural

machine translation framework, where it has been compared against both cross-

entropy training and minimum risk training. While minimum risk training also

uses a different method to directly optimise the evaluation metric, experiments

performed with MRT have yielded a smaller improvement over the cross-entropy

baseline. The implementation of RAML has shown an improvement of 1.07 BLEU

points over the cross-entropy baseline, which is quite significant.

The RAML technique can also be applied to other probabilistic learning models

with arbitrary task rewards. For machine translation, many of the other improved

training techniques described in Section 3.2 still remain to be comprehensively

explored.

39





Appendix A

Nematus: Details

A.1 Initialising the Decoder

As previously touched upon in Sections 2.1.1 and 4.3, Bahdanau et al. (2014)

initialised the decoder RNN state with a feed-forward neural network from the

final backward hidden state of the bidirectional RNN encoder, i.e.,

s0 = tanh
(
Winit

←−
h1

)
(A.1)

In Nematus, in contrast, Sennrich et al. (2017) initialise the decoder hidden

state with the mean of all the encoder annotations, i.e.,

s0 = tanh

(
Winit

∑M
m=1 hm
M

)
(A.2)

A.2 The Conditional GRU with Attention (cGRUatt)

The “conditional GRU with attention” or the cGRUatt, as mentioned before in

Section 4.3, consists of two state transition blocks with an attention mechanism

in between. All the equations below are supplied for reference from Sennrich et al.

(2017).

The first transition block GRU1, uses the previous word yj−1 and the previous

hidden state sj−1 to generate an intermediate representation s′j

s′j = GRU1(yj−1, sj−1) (A.3)

= (1− z′j)� s′j + z′j � sj−1 (A.4)

41



42 Appendix A. Nematus: Details

where

s′j = tanh
(
W ′E[yj−1] + r′j � (U ′sj−1)

)
(A.5)

r′j = σ(W ′
rE[yj−1] + U ′rsj−1) (A.6)

z′j = σ(W ′
zE[yj−1] + U ′zsj−1) (A.7)

where E is an embedding matrix (so E[yi] gives the embedding of the word yi),

r′j and z′j are the activations for the reset and update gates, and all the W and

U matrices are trainable parameters of the model.

The attention mechanism component of the cGRUatt then uses the intermediate

representation s′j along with the entire set of source annotations {h1, . . . ,hM} to

construct the context vector cj.

cj =
M∑
i=1

αijhi (A.8)

αij =
exp(eij)∑M
k=1 exp(ekj)

(A.9)

eij = v′atanh(Uas
′
j +Wahi) (A.10)

where v′a, Ua, and Wa are trainable parameters.

Finally, the second transition block uses the context vector cj along with the

intermediate representation s′j to generate the new hidden state sj as

sj = GRU2(s
′
j, cj) (A.11)

= (1− zj)� sj + zj � s′j (A.12)

where

sj = tanh
(
Wcj + rj � (Us′j)

)
(A.13)

rj = σ(Wrcj + Urs
′
j) (A.14)

zj = σ(Wzcj + Uzs
′
j) (A.15)

where, similar to the GRU1, rj and zj are the reset and update gate activations,

and all the W and U matrices are trainable model parameters.



A.3. The Output Layers 43

A.3 The Output Layers

As said in Section 4.3, the decoder uses sj, yj−1, and cj to generate the output

probability distribution. This is done as follows:

p(yj|sj,yj−1, cj) = softmax(tjWo) (A.16)

tj = tanh(sjWt1 + E[yj−1]Wt2 + cjWt3) (A.17)

where Wt1, Wt2, Wt3, and Wo are trainable parameters of the model.





Appendix B

Training Settings for Experiments

Table B.1 contains the parameters given to the nmt.train() function of Ne-

matus to train the models used for the project. Only the objective parameter

needs to be changed to select cross-entropy (CE), minimum risk training (MRT)

or RAML. Apart from that, the hyperparameters specific to RAML have been

tweaked for different experiments on RAML training. Many parameters which

were left as the default values have not been shown here. Only the parameters

which are particularly important to understand the network architecture or the

ones which have been changed from their defaults are shown.

Parameter Value Description

dim word 500 Size of word embeddings

dim 1024 Number of LSTM units

enc depth 1 Number of encoder layers

dec depth 1 Number of decoder layers

encoder gru GRU used in encoder

decoder gru cond cGRUatt used in decoder

clip c -1 Gradient clipping threshold

optimizer adam The Adam optimiser is used

lrate 0.0001 Learning rate

n words src 90000 Source vocabulary size

n words 90000 Target vocabulary size

maxlen 50 Maximum sentence length

batch size 80 Batch size

valid batch size 80 Batch size for validation

45



46 Appendix B. Training Settings for Experiments

Parameter Value Description

shuffle each epoch True Shuffle data for every training epoch

objective CE Training objective

mrt alpha 0.005 α parameter for MRT

mrt samples 70 Number of samples per input

mrt reference False Add ground truth to set of samples

mrt loss SENTENCEBLEU n=4 Loss function for MRT

raml tau 0.95 τ ∈ (0, 1], τ = 0 is same as CE

raml samples 1 Number of samples per output

raml reward hamming distance Reward function for RAML

Table B.1: Nematus training parameters



Bibliography

P. Koehn, Statistical Machine Translation, 1st ed. Cambridge University Press,

2010.

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, “The mathemat-

ics of statistical machine translation: Parameter estimation,” Computational

linguistics, vol. 19, no. 2, pp. 263–311, 1993.

F. J. Och and H. Weber, “Improving statistical natural language translation with

categories and rules,” in Proceedings of the 36th Annual Meeting of the Asso-

ciation for Computational Linguistics and 17th International Conference on

Computational Linguistics-Volume 2. Association for Computational Linguis-

tics, 1998, pp. 985–989.

F. J. Och, C. Tillmann, H. Ney et al., “Improved alignment models for statis-

tical machine translation,” in Proc. of the Joint SIGDAT Conf. on Empirical

Methods in Natural Language Processing and Very Large Corpora, 1999, pp.

20–28.

Y.-Y. Wang and A. Waibel, “Modeling with structures in statistical machine

translation,” in Proceedings of the 36th Annual Meeting of the Association

for Computational Linguistics and 17th International Conference on Compu-

tational Linguistics-Volume 2. Association for Computational Linguistics,

1998, pp. 1357–1363.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[Online]. Available: https://arxiv.org/pdf/1409.0473.pdf

K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN

47

https://arxiv.org/pdf/1409.0473.pdf


48 Bibliography

encoder–decoder for statistical machine translation,” in Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP).

Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp.

1724–1734. [Online]. Available: http://www.aclweb.org/anthology/D14-1179

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Advances in neural information processing systems, 2014,

pp. 3104–3112.

L. Bentivogli, A. Bisazza, M. Cettolo, and M. Federico, “Neural versus phrase-

based machine translation quality: A case study,” CoRR, vol. abs/1608.04631,

2016. [Online]. Available: http://arxiv.org/pdf/1608.04631.pdf

M. Junczys-Dowmunt, T. Dwojak, and H. Hoang, “Is neural machine

translation ready for deployment? A case study on 30 translation

directions,” arXiv preprint arXiv:1610.01108, 2016. [Online]. Available:

http://arxiv.org/pdf/1610.01108.pdf

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with

recurrent neural networks,” arXiv preprint arXiv:1511.06732, 2015. [Online].

Available: https://arxiv.org/pdf/1511.06732.pdf

J. Lafferty, A. McCallum, F. Pereira et al., “Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data,” in Proceedings

of the eighteenth international conference on machine learning, ICML, vol. 1,

2001, pp. 282–289.

M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D. Schuurmans et al.,

“Reward augmented maximum likelihood for neural structured prediction,” in

Advances In Neural Information Processing Systems, 2016, pp. 1723–1731.

L. Chrisman, “Learning recursive distributed representations for holistic compu-

tation,” Connection Science, vol. 3, no. 4, pp. 345–366, 1991.

M. L. Forcada and R. P. Ñeco, “Recursive hetero-associative memories for trans-

lation,” Biological And Artificial Computation: From Neuroscience To Tech-

nology, vol. 1240, pp. 453–462, 1997.

N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation models.” in

EMNLP, vol. 3, no. 39, 2013, p. 413.

http://www.aclweb.org/anthology/D14-1179
http://arxiv.org/pdf/1608.04631.pdf
http://arxiv.org/pdf/1610.01108.pdf
https://arxiv.org/pdf/1511.06732.pdf


Bibliography 49

N. Kalchbrenner and P. Blunsom, “Recurrent convolutional neural networks for

discourse compositionality,” Proceedings of the 2013 Workshop on Continuous

Vector Space Models and their Compositionality, 2013.

T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent

neural network based language model.” in Interspeech, vol. 2, 2010, p. 3.

J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp.

179–211, March 1990.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” Trans. Neur. Netw., vol. 5, no. 2, pp. 157–166,

Mar. 1994. [Online]. Available: http://dx.doi.org/10.1109/72.279181

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:

http://dx.doi.org/10.1162/neco.1997.9.8.1735

F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget:

Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10,

pp. 2451–2471, Oct. 2000. [Online]. Available: http://dx.doi.org/10.1162/

089976600300015015

F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in Neural

Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS Interna-

tional Joint Conference on, vol. 3. IEEE, 2000, pp. 189–194.

K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,

“LSTM: A search space odyssey,” IEEE transactions on neural networks and

learning systems, 2016.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of

gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014. [Online]. Available: https://arxiv.org/pdf/1412.3555.

pdf

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
https://arxiv.org/pdf/1412.3555.pdf
https://arxiv.org/pdf/1412.3555.pdf


50 Bibliography

M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to

attention-based neural machine translation,” arXiv preprint arXiv:1508.04025,

2015. [Online]. Available: https://arxiv.org/pdf/1508.04025.pdf

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.org/pdf/

1412.6980.pdf

M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012. [Online]. Available: https://arxiv.org/pdf/1212.5701.

pdf

R. Williams, D. Rumelhart, and G. Hinton, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–538, 1986.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for automatic

evaluation of machine translation,” in Proceedings of the 40th annual meeting

on association for computational linguistics. Association for Computational

Linguistics, 2002, pp. 311–318.

B. Chen and C. Cherry, “A systematic comparison of smoothing techniques for

sentence-level BLEU.” in WMT@ ACL, 2014, pp. 362–367.

G. Doddington, “Automatic evaluation of machine translation quality using

n-gram co-occurrence statistics,” in Proceedings of the Second International

Conference on Human Language Technology Research, ser. HLT ’02. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 138–145.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1289189.1289273

M. Denkowski and A. Lavie, “Meteor universal: Language specific translation

evaluation for any target language,” in Proceedings of the EACL 2014 Work-

shop on Statistical Machine Translation, 2014.

S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-search

optimization,” arXiv preprint arXiv:1606.02960, 2016. [Online]. Available:

https://arxiv.org/pdf/1606.02960.pdf

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu, “Minimum risk

training for neural machine translation,” in Proceedings of the 54th Annual

https://arxiv.org/pdf/1508.04025.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1212.5701.pdf
http://dl.acm.org/citation.cfm?id=1289189.1289273
https://arxiv.org/pdf/1606.02960.pdf


Bibliography 51

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics, 2016, pp. 1683–1692.

[Online]. Available: http://aclweb.org/anthology/P16-1159

R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,

S. Petrov, and M. Collins, “Globally normalized transition-based neural

networks,” arXiv preprint arXiv:1603.06042, 2016. [Online]. Available:

https://arxiv.org/pdf/1603.06042.pdf

R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler, M. Junczys-

Dowmunt, S. Läubli, A. V. Miceli Barone, J. Mokry, and M. Nadejde,

“Nematus: a toolkit for neural machine translation,” in Proceedings of the

Software Demonstrations of the 15th Conference of the European Chapter of

the Association for Computational Linguistics. Valencia, Spain: Association

for Computational Linguistics, April 2017, pp. 65–68. [Online]. Available:

http://aclweb.org/anthology/E17-3017

P. Koehn, “Europarl: A parallel corpus for statistical machine translation,” in

MT summit, vol. 5, 2005, pp. 79–86.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,

B. Cowan, W. Shen, C. Moran, R. Zens et al., “Moses: Open source toolkit

for statistical machine translation,” in Proceedings of the 45th annual meeting

of the ACL on interactive poster and demonstration sessions. Association for

Computational Linguistics, 2007, pp. 177–180.

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare

words with subword units,” arXiv preprint arXiv:1508.07909, 2015. [Online].

Available: https://arxiv.org/pdf/1508.07909.pdf

http://aclweb.org/anthology/P16-1159
https://arxiv.org/pdf/1603.06042.pdf
http://aclweb.org/anthology/E17-3017
https://arxiv.org/pdf/1508.07909.pdf

	Introduction
	Before Neural Machine Translation
	Neural Machine Translation
	Outline of the Thesis

	Background
	Neural Machine Translation (NMT)
	RNN Encoder-Decoder Architecture
	The Attention Mechanism
	Training RNN Encoder-Decoder Models

	Evaluation
	BLEU: A Bilingual Evaluation Understudy
	Other Metrics


	Advanced Training Methods
	Problems with NMT Training
	Loss-Evaluation Mismatch
	Exposure Bias
	Label Bias

	Improved Training Methods
	Minimum Risk Training
	MIXER
	Globally Normalised Transition-Based Neural Networks
	Beam Search Optimisation
	Reward Augmented Maximum Likelihood


	Method and Implementation
	Reward Augmented Maximum Likelihood (RAML)
	Sampling from the Exponentiated Payoff Distribution
	Hamming Distance
	Edit Distance
	BLEU Score

	Nematus

	Experiments and Results
	The Data
	Datasets
	Preprocessing and Postprocessing

	Baselines
	Cross-entropy Training Baseline
	Minimum Risk Training Baseline

	Experiment Design
	Results

	Conclusion
	Nematus: Details
	Initialising the Decoder
	The Conditional GRU with Attention (cGRUatt)
	The Output Layers

	Training Settings for Experiments
	Bibliography

